Five common data aggregation mistakes and how to fix them

Rating & reviews (0 reviews)
Data aggregation can provide insights into key metrics such as revenue growth, unit production, or earnings per customer. Internally, and especially with the improvements in analytics, data aggregation provides a steady stream of insight for teams of all sizes. As such, it’s become an essential tool across many verticals, such as finance, energy and utilities, and healthcare. Below, we’ll look at the most common data aggregation mistakes and how they can be fixed.

Data duplication already contributes to unmanageable and costly data swamps, and it can also have major negative impacts on data aggregation processes. The double-counting of data can significantly skew results leading to false outputs and decision-making based on erroneous data. Data duplication occurs for a number of reasons, including problems during data integration and lack of metadata usage. Avoiding the impacts of duplicate data on data aggregation is an ongoing governance process that can be assisted through the deployment of custom data architecture.

 

`

This website may use use your personal data that you provide to us through your interaction with this website using cookies. All of them are essential for the website to work. As long as you do not sign in, all cookies collect information in an anonymous format. For more information, please read our Privacy policy and Cookies pages.